OmniTensor provides a sophisticated infrastructure for fine-tuning custom AI models leveraging its decentralized compute network. This guide explores advanced techniques for optimizing pre-trained models to suit specific use cases within the OmniTensor ecosystem.
Overview
Fine-tuning allows developers to adapt pre-existing models to specific domains or tasks, significantly reducing the time and resources required compared to training from scratch. OmniTensor's distributed fine-tuning pipeline enables efficient and scalable model optimization across its decentralized network.
Key Components
Distributed Fine-Tuning Orchestrator
Adaptive Learning Rate Scheduler
Gradient Accumulation and Sharding
Automated Hyperparameter Optimization
Cross-Validation on Decentralized Data
Fine-Tuning Process
1. Preparing Your Model and Data
Initialize your fine-tuning job with the OmniTensor SDK:
Copy from omnitensor import FineTuningJob , ModelRepository , DatasetManager
base_model = ModelRepository . get ( "gpt-3-small" )
custom_dataset = DatasetManager . load ( "my_domain_specific_data" )
job = FineTuningJob (
base_model = base_model,
dataset = custom_dataset,
task_type = "text_classification"
)
2. Configuring Fine-Tuning Parameters
Set up advanced fine-tuning parameters:
Copy from omnitensor . finetuning import AdaptiveLearningRate , GradientAccumulation
job . set_hyperparameters (
epochs = 10 ,
batch_size = 32 ,
learning_rate = AdaptiveLearningRate (
initial_lr = 5e-5 ,
warmup_steps = 1000 ,
decay_strategy = "cosine"
),
gradient_accumulation = GradientAccumulation (
num_micro_batches = 4
)
)
3. Implementing Custom Loss Functions
Define a custom loss function for your specific task:
Copy import torch
from omnitensor . finetuning import LossFunction
class CustomFocalLoss ( LossFunction ):
def __init__ ( self , alpha = 0.25 , gamma = 2.0 ):
self . alpha = alpha
self . gamma = gamma
def calculate ( self , predictions , targets ):
bce_loss = torch . nn . functional . binary_cross_entropy_with_logits (predictions, targets, reduction = 'none' )
pt = torch . exp ( - bce_loss)
focal_loss = self . alpha * ( 1 - pt) ** self . gamma * bce_loss
return focal_loss . mean ()
job . set_loss_function ( CustomFocalLoss (alpha = 0.3 , gamma = 2.5 ))
4. Leveraging Distributed Training
Utilize OmniTensor's distributed training capabilities:
Copy from omnitensor . finetuning import DistributedConfig
job . set_distributed_config ( DistributedConfig (
num_nodes = 5 ,
gpu_per_node = 4 ,
communication_backend = "nccl"
))
5. Implementing Custom Callbacks
Create custom callbacks for monitoring and intervention during training:
Copy from omnitensor . finetuning import Callback
class EarlyStoppingCallback ( Callback ):
def __init__ ( self , patience = 3 , min_delta = 0.001 ):
self . patience = patience
self . min_delta = min_delta
self . best_score = float ( 'inf' )
self . counter = 0
def on_epoch_end ( self , epoch , logs ):
current_score = logs [ 'val_loss' ]
if current_score < self . best_score - self . min_delta :
self . best_score = current_score
self . counter = 0
else :
self . counter += 1
if self . counter >= self . patience :
self . model . stop_training = True
job . add_callback ( EarlyStoppingCallback (patience = 5 , min_delta = 0.0005 ))
6. Automated Hyperparameter Optimization
Leverage OmniTensor's automated hyperparameter tuning:
Copy from omnitensor . finetuning import HyperparameterOptimization , HyperparameterSpace
hp_space = HyperparameterSpace (
learning_rate = { "min" : 1e-5 , "max" : 1e-3 , "scale" : "log" },
batch_size = [ 16 , 32 , 64 , 128 ],
num_layers = [ 2 , 3 , 4 , 5 ]
)
hp_optimization = HyperparameterOptimization (
strategy = "bayesian" ,
num_trials = 50 ,
metric_to_optimize = "val_f1_score" ,
direction = "maximize"
)
job . enable_hp_optimization (hp_space, hp_optimization)
7. Cross-Validation on Decentralized Data
Implement cross-validation across the decentralized network:
Copy from omnitensor . finetuning import DecentralizedCrossValidation
cross_val = DecentralizedCrossValidation (
num_folds = 5 ,
stratify = True ,
shuffle = True
)
job . set_cross_validation (cross_val)
8. Launching the Fine-Tuning Job
Start the fine-tuning process:
Copy fine_tuned_model = job . run ()
print ( f "Fine-tuning completed. Model accuracy: { fine_tuned_model. evaluate () } " )
Advanced Techniques
1. Progressive Layer Unfreezing
Gradually unfreeze layers during fine-tuning:
Copy from omnitensor . finetuning import ProgressiveUnfreezing
unfreezing = ProgressiveUnfreezing (
initial_frozen_layers = 12 ,
unfreeze_every_n_epochs = 2
)
job . set_layer_unfreezing (unfreezing)
2. Knowledge Distillation
Implement knowledge distillation for model compression:
Copy from omnitensor . finetuning import KnowledgeDistillation
distillation = KnowledgeDistillation (
teacher_model = ModelRepository. get ( "gpt-3-large" ),
temperature = 2.0 ,
alpha = 0.5
)
job . enable_knowledge_distillation (distillation)
3. Adversarial Training
Enhance model robustness with adversarial training:
Copy from omnitensor . finetuning import AdversarialTraining
adversarial_config = AdversarialTraining (
attack_type = "pgd" ,
epsilon = 0.01 ,
alpha = 0.001 ,
num_steps = 10
)
job . enable_adversarial_training (adversarial_config)
Monitoring and Analytics
Utilize OmniTensor's real-time monitoring tools during fine-tuning:
Copy from omnitensor . monitoring import FineTuningMonitor
monitor = FineTuningMonitor (job)
monitor . start ()
# Fine-tuning process runs here
metrics = monitor . get_metrics ()
print ( f "Training loss: { metrics.train_loss } " )
print ( f "Validation accuracy: { metrics.val_accuracy } " )
print ( f "GPU utilization: { metrics.gpu_utilization } %" )
monitor . stop ()